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On Skew-Symmetric Splitting and Entropy Conservation
Schemes for the Euler Equations

Björn Sjögreen and H. C. Yee

Abstract The Tadmor type of entropy conservation formulation for theEuler equations and various skew-
symmetric splittings of the inviscid flux derivatives are discussed. Numerical stability of high order central and
Padé type (centered compact) spatial discretization is enhanced through the application of these formulations.
Numerical test on a 2-D vortex convection problem indicatesthat the stability and accuracy of these formula-
tions using the same high order central spatial discretization are similar for vortex travel up to a few periods.
For two to three times longer time integrations, their corresponding stability and accuracy behaviors are very
different. The goal of this work is to improve treatment of nonlinear instabilities and to minimize the use of nu-
merical dissipation in numerical simulations of shock-free compressible turbulence and turbulence with shocks
.

1 Introduction

Many high resolution numerical schemes for the simulation of turbulence with shocks consist of employing
primarily a high order accurate central or Padé (centered compact) spatial discretization in the entire compu-
tational domain, and activating a shock-capturing scheme through a flow sensor only in the neighborhood of
shocks and in the regions of spurious high frequency oscillations. One example is the filter schemes developed
in [16, 17, 9, 8, 14]. The objective of this paper is to investigate the stability and accuracy behavior of high order
spatial central schemes in conjunction with the use of the various skew-symmetric splittings of the inviscid flux
derivative or the Tadmor type of entropy conservation formulation for the Euler equations. The flow solutions
studied here will therefore be assumed to have a smooth solution.

Due to nonlinear instabilities, solving highly coupled nonlinear conservation laws by spatial centered dif-
ference or Padé approximations does not usually lead to a stable method, even when the solution is smooth.
Ways to stabilize such methods are to add high order numerical dissipation, or to employ a high pass filter to
the solution after each time step. However, in long time integrations and compressible turbulent simulations
even small amounts of numerical dissipation can be amplifiedover time, leading to, e.g., smearing of turbu-
lence fluctuations to un-recognizable forms. An approach tominimize the use of numerical dissipation is to
apply these schemes to the split form of the flux derivatives to improve nonlinear stability of the simulation. To
understand how this works, consider the the scalar Burgers’equation,ut + fx = 0 with f = u2/2. The flux
derivative can be split into the equivalent formfx = 1

2fx + 1
2

∂f
∂u

∂u
∂x . For simplicity of discussion, we discretize

the split form by a second-order central scheme
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d

dt
uj +

1

2
ujD0uj +

1

4
D0u

2
j = 0. (1)

The grid is uniform,xj = (j − 1)∆x, with grid spacing∆x, anduj(t) is an approximation of the solution
u(x, t), at the grid pointxj . The centered difference operator isD0uj = (uj+1 − uj−1)/2∆x. Linearization
of (1) around a smooth and bounded solutionûj(t) leads to the equation

d

dt
ej +

1

2
ejD0ûj +

1

2
ûjD0ej +

1

2
D0ûjej = 0

for the small perturbationej. In the scalar product(u, v)h = ∆x
∑

j ujvj and norm||u||2h = (u, u)h, we obtain

1

2

d

dt
||e(t)||2h = (e, et)h = −

1

2
(e, eD0û)h −

1

2
(e, ûD0e)h −

1

2
(e,D0ûe)h.

The summation by parts property(u,D0v)h = −(D0u, v)h eliminates the last two terms to give

1

2

d

dt
||e(t)||2h = −

1

2
(e, eD0û) ≤ C(e, e)h

for a constantC that depends on the maximum spatial derivative ofû. Gronwall’s lemma gives the standard
well-posedness estimate,

||e|| ≤ K1e
K2t

for constantsK1 andK2. Consequently, the linearization of (1) isL2 stable. Strang’s theorem, see [7], states that
if the solution is smooth, and if the method ispth order accurate and smooth, and has anL2 stable linearization,
then the numerical solution converges withpth order convergence rate. We have thus proved that the split
method (1) is convergent as long as no shocks form.

However, because the convergence is up to a fixed time as the grid is refined, it does not necessarily imply
that the method is suitable for long time integration. Furthermore, other splittings are possible with different
weights on the conservative and non-conservative terms in (1) that do not directly lead to a well-posedness
estimate, but turned out to work equally well in numerical experiments. In the absence of better mathematical
tools, numerical investigations to assess various possible schemes will be necessary.

In our previous work, non-conservative entropy splitting [15] turned out to be stable and accurate, but when
mixed with shock capturing schemes, non-conservative effects sometimes make shocks move with incorrect
speeds. As conservative alternatives to entropy splitting, we will consider here the skew-symmetric splitting
of Ducros et al. [2, 3] and the entropy conservative formulation of Tadmor [11, 12]. Section 2 describes these
methods for the Euler equations of compressible gas dynamics. Section 3 reports results from numerical ex-
periments comparing the entropy split scheme, the skew-split scheme, and the entropy conserving scheme. The
discussion concentrates of high order central schemes. Padé type of spatial discretizations will not be discussed
due to lack of space.

2 Non-dissipative schemes

For ease of presentation we will describe non-dissipative schemes applied to the compressible Euler equations
in one space dimension. The generalization to three space dimensions is straightforward. The Euler equations
are

ut + f(u)x = 0, (2)

whereu = (ρ, ρu, e) andf(u) = (ρu, ρu2 +p, u(e+p)). The dependent variables are densityρ, momentum
ρu, and total energye. The pressure isp = (γ− 1)(e− 1

2ρu
2), whereγ is a given constant. The computational

domain is0 < x < L, with periodic boundary conditions atx = 0 andx = L. u is assumed to be given at
the initial time. The grid pointsxj = (j − 1)∆x, j = 1, . . . , N , where∆x = L/(N − 1), discretizes the



computational domain. Undivided difference operators aredenoted∆+uj = uj+1 − uj , ∆0uj = (uj+1 −
uj−1)/2, and∆

−
uj = (uj − uj−1)

2.1 Skew-symmetric splitting

Splitting of the derivative of a product in conservative andnon-conservative part is done by application of the
formula

(ab)x =
1

2
(ab)x +

1

2
abx +

1

2
axb, (3)

before discretization. An interesting property is that thesplit approximation can be written on conservative
form,

1

2
D0(ab)j +

1

2
ajD0bj +

1

2
bjD0aj =

1

4
D+(aj + aj−1)(bj + bj−1), (4)

whereD+uj = (uj+1 − uj)/∆x. (4) can be generalized to arbitrary orders of accuracy if the second order
operatorD0 is replaced by the2pth order accurate

D0puj =

p∑

k=1

α
(p)
k D0(k)uj . (5)

The expanded operators are defined as

D0(k)uj = (uj+k − uj−k)/(2k∆x)

and the coefficients satisfy

p∑

k=1

α
(p)
k = 1

p∑

k=1

α
(p)
k k2n = 0, n = 1, . . . , p− 1. (6)

For details see Ducros et al. [2]. Their key idea is to generalize a splitting that leads to kinetic energy conser-
vation for the incompressible flow equations, to compressible flows.

There are many different ways that (3) can be used for the Euler equations. Different splittings are obtained
from different ways to write the fluxes as products of two factors, and it is possible to apply splitting to only
some of the equations. In the numerical investigations reported in [5], one of the best performing splittings for
(2) was (here displayed with second order accuracy)

d

dt
ρj +

1

2
D0ρjuj +

1

2
ρjD0uj +

1

2
ujD0ρj = 0

d

dt
(ρu)j +

1

2
D0ρju

2
j +

1

2
ρjujD0uj +

1

2
ujD0ρjuj +D0pj = 0 (7)

d

dt
ej +

1

2
D0uj(ej + pj) +

1

2
ujD0(ej + pj) +

1

2
(ej + pj)D0uj = 0.

In three space dimensions the recipe for (7) is to apply (4) toeach of the two products in the general three dimen-
sional fluxf = unu + pe, whereun is the velocity normal to the cell interface, ande = (0, k1, k2, k3, un),
with (k1, k2, k3) being the cell interface normal.

See [4] for a comparison of splitting methods with differentformulations of the energy equation. For a
heuristic discussion on aliasing errors for split approximations, see [1].

The homogeneity of the Euler fluxes means thatf(u) = A(u)u, whereA(u) is the Jacobian off(u). A
natural splitting would therefore be



d

dt
uj +

1

2
D0fj +

1

2
AjD0uj +

1

2
D0(Aj)uj = 0, (8)

which is of a form that is more suitable for the norm estimate technique described in Sec. 1 for a scalar problem.

2.2 Entropy conserving schemes

Entropy conserving schemes were introduced in in the 1980s.See, e.g., [11]. These schemes are in conservation
form, and admit a discrete conservation law for the entropy.An entropy,E(u), and an entropy fluxF (u) are
two functions satisfying

ET
u
A(u) = FT

u
.

Here,Eu denotes the gradient ofE with respect tou. Furthermore,E(u) is assumed to be a convex function.
The entropy variables are defined byv = Eu(u). Multiplying (2) byvT gives the entropy equation

vT ut + vTAux = E(u)t + FT
u
ux = E(u)t + F (u)x = 0.

The entropy flux potential, defined by
ψ = vT f − F

has the property thatf = ψv.
The following construction defines a high order entropy conservation scheme.

Theorem 1. The semi-discrete approximation of a system of conservation laws given by

∆x
d

dt
uj +

p∑

k=1

α
(p)
k

k
(g

(k)
j+k/2 − g

(k)
j−k/2) = 0, (9)

whereg(k)
j+k/2 satisfies

(vj+k − vj)
T g

(k)
j+k/2 = ψj+k − ψj (10)

and where thekth flux differences approximate the flux derivative to secondorder with a truncation error of
even powers ofk∆x,

g
(k)
j+k/2 − g

(k)
j−k/2 = k∆xfx + k3∆x3φ1 + k5∆x5φ2 + . . . , (11)

is 2pth order accurate, and admits a discrete entropy equation

∆x
d

dt
Ej +

p∑

k=1

α
(p)
k

k
(H

(k)
j+k/2 −H

(k)
j−k/2) = 0, (12)

whereH(k)
j+k/2 = 1

2 ((vj+k +vj)
Tg

(k)
j+k/2 − (ψj+k +ψj)). Both (9) and (12) can be cast in conservation form,

because

aj+k/2 − aj−k/2 = ∆+(

k−1∑

m=0

aj−k/2+m)

for any arbitrary grid functionaj+k/2 that satisfiesaj+k/2−k = aj−k/2.

Proof. Multiply (9) by vT
j to obtain

∆x
d

dt
E(uj)t +

p∑

k=1

α
(p)
k

k
(vT

j gj+k/2 − vT
j gj−k/2) = 0.



Rewrite each flux difference as

vT
j g

(k)
j+k/2 − vT

j g
(k)
j−k/2 =

1

2
(vj+k + vj)

Tg
(k)
j+k/2 −

1

2
(vj+k − vj)

Tg
(k)
j+k/2

−
1

2
(vj + vj−k)T g

(k)
j−k/2 −

1

2
(vj − vj−k)g

(k)
j−k/2

and use (10) to conclude that

vT
j g

(k)
j+k/2 − vT

j g
(k)
j−k/2 =

1

2
((vj+k + vj)

Tg
(k)
j+k/2 − (vj + vj−k)T g

(k)
j−k/2

−(ψj+k + ψj) + (ψj + ψj−k)). (13)

It is clear from (13) that the entropy conservation (12) follows.
It remains to prove that the order of accuracy is2p. Assumption (11) gives

p∑

k=1

α
(p)
k

k
(g

(k)
j+k/2 − g

(k)
j−k/2) =

p∑

k=1

α
(p)
k (∆xφ1 + αkk

2∆x3φ3 + αkk
4∆x5φ5 + . . .).

(6) gives
p∑

k=1

α
(p)
k

k
(g

(k)
j+k/2 − g

(k)
j−k/2) = ∆xfx + O(∆x2p+1),

showing that the order of accuracy is2p. ⊓⊔

This scheme was also described, although not implemented, in [10].
For a scalar conservation law the simple choiceg

(k)
j+k/2 = (ψj+k − ψj)/(vj+k − vj) satisfies both (10) and

(11). For the one dimensional Euler system [12, 13] defined entropy conserving fluxes based on integration
in phase space. Here, we instead writeψ as a function of the entropy variables and determine functionsϕi

consistent with the gradient ofψ and satisfying

(ψj+k − ψj) = ϕ1((v1)j+k − (v1)j) + . . .+ ϕ3((v3)j+k − (v3)j).

The definitiong(k)
j+k/2 = (ϕ1, ϕ2, ϕ3) determines an entropy conservative method. As an example, consider

the entropyE(u) = 1+γ
1−γ (ρp)

1
γ+1 , which has the entropy flux potential (for explicit expressions for the entropy

variables, see [15] or [13])
ψ = −

v2
v3

((γ − 1)(v1v3 − v2
2/2))

1
1−γ .

Denoteq = (γ − 1)(v1v3 − v2
2/2), and perform the expansion by repeated use of the rule

∆ab = a∆b+ b∆a

where∆a denotesaj+k − aj anda denotes(aj+k + aj)/2. The expansion becomes,
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1
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)q

1
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∆q

1
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=
1
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1
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∆q

1
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∆q
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q

1
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j+k − q
1
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j
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q
1

1−γ
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1
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j
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DenotingQ =
q

1
1−γ

j+k
−q

1
1−γ
j

qj+k−qj
(γ − 1), the final expression becomes

∆ψ = −
v2
v3
Qv3∆v1 + (−

v3
(v3)j+k(v3)j

g
1

1−γ +
v2
v3
Qv2)∆v2

+(
v2

(v3)j+k(v3)j
g

1
1−γ −

v2
v3
Qv1)∆v3.

It is possible to obtain the numerical flux function in standard variables by transforming back from entropy
variables. For example, the mass flux for the second order method (k = 1) becomes

−
v2
v3
Qv3 = uρ(pρ−

γ
1+γ )Q.

The difference quotientQ tends topρ
γ

γ+1 when∆q becomes small. Therefore, this flux is consistent. For
comparison, the mass flux in (7) is

uρ.

Therefore, apart from the factorQ, the entropy conservative scheme can be interpreted as a splitting method.

By redefiningQ aspρ
γ

γ+1 , the entropy conservative scheme would become a split scheme, but then perfect
entropy conservation would no longer be certain.

3 Numerical experiments

The isentropic vortex convection problem for the two dimensional Euler equations has initial data

ρ = (1 −
(γ − 1)β̂2

8γπ2
e1−r2

)
1

γ−1

u = 1 −
β̂(y − y0)

2π
e

1−r2

2

v =
β̂(x− x0)

2π
e

1−r2

2

p = ργ

wherer2 = (x− x0)
2 + (y − y0)

2, (x0, y0) is the center of the vortex, and̂β is the strength of the vortex. The
exact solution consists of the initial data translated withvelocity one in thex-direction. We solve the isentropic
vortex convection problem on the computational domain0 ≤ x ≤ 18, 0 ≤ y ≤ 18 with periodic boundaries.
The strength and center of the vortex areβ̂ = 5 and (x0, y0) = (9, 9), respectively. The grid spacing is
∆x = ∆y = 0.25. All computations use eighth order accurate spatial discretizations with fourth order Runge-
Kutta in time. Figure 1 displays a comparison of the norm of the solution error vs. time for five different
methods. The final time of the computation is 180, which corresponds to 10 periods of vortex convection.
D08ES (blue line) denotes the non-conservative entropy splitting of Olsson and Oliger [6, 15] with splitting
parameterβ = 2, D08SS (red line) denotes the Ducros et al. split scheme (7),D08EC (black line) denotes
the Tadmor-like entropy conservative scheme implemented as described in Sect. 2, D08 (green line) denotes
the pure centered scheme, and D08CS (light blue line) denotes the natural split scheme (8). All schemes have
small errors during the first period. The purely centered approximation, D08, breaks down due to the non-linear
instability at a very early time. After two periods D08EC hasthe smallest error. The error grows to become
large after three periods for D08EC, and after around five to six periods for the other schemes. This error is
completely dispersive, and the solutions are highly oscillatory for all methods. The skew split schemes, D08SS
and D08CS, break down with negative pressure at around time 140. This does not necessarily mean that they
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Fig. 1 Vortex convection. Norm of error vs. time for D08ES (blue), D08SS (red), D08EC (black), D08 (green), and D08CS (light
blue). Inviscid computation.

are unstable. They might be accurate for longer times on a finer grid. The entropy split scheme, D08ES, has the
best performance, but it will eventually also reach a state where all accuracy has disappeared due to dispersive
errors. It appears that the accuracy of D08EC is more sensitive to the small scale oscillations that develop.
However, unlike D08SS and D08EC, the small oscillations do not make D08EC break down.
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Fig. 2 Vortex convection. Norm of distance to inviscid solution vs. time for D08ES (blue), D08SS (red), D08EC (black), D08
(green), and D08CS (light blue). Navier-Stokes equations with µ = 0.001. Results are indistinguishable for all schemes except
D08.

One reason for using entropy split and entropy conservativeschemes for the Navier-Stokes equations is that
all dissipation in the computed flow will be entirely due to physical viscosity of the Navier-Stokes operator.
There is no numerical diffusion. Furthermore, the high frequency modes that cause instabilities in the inviscid
case will be limited by the physical viscosity. Figure 2 displays the norm of the difference between the inviscid
solution and the computed solution vs. time for a solution ofthe Navier-Stokes equations. The same vortex
convection problem as in Fig. 1 was solved, but with the addedNavier-Stokes viscosity operator with a constant
viscosity coefficientµ = 0.001 and heat conduction corresponding to the Prandtl number 0.72. The viscosity



was discretized by eighth order centered difference operators. The viscosityµ = 0.001 is far from resolved
on the grid, which has∆x = 0.25. The parabolic time step restriction is not activated. Evenwith this small
dissipation, all methods, except D08, are well behaved. There is no accumulation of high frequency errors. The
curves in Fig. 2 are indistinguishable. The viscosity is notlarge enough to prevent the blow-up of the pure
centered scheme. However, increasing the viscosity toµ = 0.01, which is also unresolved on the grid, gives
more or less identical results with all methods (results notplotted), including the pure centered scheme.

In summary, the non-conservative entropy splitting and theDucros et al. skew-symmetric split formulations
perform the best for this particular smooth flow. However, Ducros et al.’s formulation is conservative and it is
applicable to problems containing shock waves.
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8. B. Sjögreen and H. C. Yee,Grid Convergence of High Order Methods for Multiscale Complex Unsteady Viscous compressible

Flows, J. Comput. Phys.,185 (2003) 1–26.
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